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Abstract. Convolutional Neural Network (CNN) features have demon-
strated outstanding performance as global representations for image clas-
sification, but they lack invariance to scale transformation, which makes
it difficult to adapt to various complex tasks such as scene classifica-
tion. To strengthen the scale invariance of CNN features and meanwhile
retain their powerful discrimination in scene classification, we propose
a framework where cross-level Locality-constrained Linear Coding and
cascaded fine-tuned CNN features are combined, which is shorted as
cross-level LLC-CNN. Specifically, this framework first fine-tunes multi-
level CNNs in a cascaded way, then extracts multi-level CNN features
to learn a cross-level universal codebook, and finally performs locality-
constrained linear coding (LLC) and max-pooling on the patches of all
levels to form the final representation. It is experimentally verified that
the LLC responses on the universal codebook outperform the CNN fea-
tures and achieve the state-of-the-art performance on the two currently
largest scene classification benchmarks, MIT Indoor Scenes and SUN 397.

1 Introduction

Scene classification is a fundamental problem in computer vision. However, it
is not an easy task due to the great diversity of image contents as well as the
variations in illumination and scale conditions. Conventional approaches such
as Bag-of-Features (BoF) model [1], Bag-of-Parts (BoP) [2], Object Bank [3],
and their respective combinations with Spatial Pyramid Matching (SPM) [4],
have achieved satisfactory performance in this task. These works [5, 6] utilize
hand-crafted features, e.g., SIFT [7] and HOG [8], which require designing lots
of tricks and lack image representation power for different complex problems.

Recently, in contrast to hand-crafted features, image features learned from
Convolutional Neural Network (CNN) [9] have achieved great success in vision
recognition tasks [10–13]. Among these works, one of the greatest breakthroughs
is that CNN has achieved an accuracy which is 10% higher than all the hand-
crafted feature based methods in ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC) [14] which contains over 1 million images from 1000 categories.
Inspired by the outstanding performance of CNN in large-scale image classifica-
tion, many works [15–18] consider how to transfer CNN features pre-trained on
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ImageNet to small-scale computer vision tasks in which only a limited number
of task-specific training samples are available. As generic global image repre-
sentations, off-the-shelf CNN features pre-trained on ImageNet are successfully
applied to various vision tasks, including object detection [18] and image re-
trieval [19]. Furthermore, to improve the adaptation and representation power of
CNN features in specific tasks, the fine-tuned CNN features based on pre-trained
ImageNet CNN features are also used and have achieved better performance in
these transferred tasks [17, 16, 20].

Despite the great success of CNN in various vision tasks, as global image
representations, CNN features retain too much global spatial information and
lack invariance to scale transformation since raw pixels are filtered and pooled
alternatively within their local neighborhoods in the network. Actually, as shown
in [21], feature maps after each layer can be used to reconstruct the original im-
age due to the high spatial order of CNN features. Although the max-pooling
layer after each convolution layer provides a certain degree of invariance to local
scale transformation, invariance to global scale transformation cannot be guar-
anteed. Based on the 4096-dimensional global CNN features, their variance to
scale transformation will directly lead to the decrease of recognition accuracy
when only scale transformed images are available for testing.

To improve the scale invariance of CNN features, a multi-level pooling frame-
works has been proposed by [19]. Specifically, CNN features from patches with
various sizes in different levels of the framework are extracted as mid-level im-
age representations, followed by an intra-level pooling process over these patches.
Within one level, densely distributed patch features cover the whole image and
are pooled in an orderless way. By pooling the patch CNN features in each level,
the final representation becomes patch-level orderless and scale invariant to a
certain degree.

However, when the whole testing image is scaled, all the patches of its finer
levels will be scaled by the same scaling ratio accordingly. In this case, CNN fea-
tures of both the whole image and the patches of all levels will not work well since
CNN features of each level are learned in a supervised manner from the training
patches in the same level. To demonstrate this, we conduct an experiment on an
image from SUN 397 [22] with the model trained on original training samples.
Figure 1 shows the prediction of each patch in level 1 and level 2 of both the
original image and its scaled version (10/6 ratio). As can be seen, both the whole
image (level 1) and patches in level 2 obtain the correct predictions – “tent” by
the fine-tuned CNN of their own level. In contrast, the scaled testing image ob-
tains a wrong prediction – “mountain” using the fine-tuned CNN trained on the
original non-scaled training images. A similar situation also happens in level 2,
where 3 patches of the total 4 obtain wrong predictions. In this case, even if
orderless pooling is performed on top of the CNN features of patches, no scale
invariance can be guaranteed since the features to be pooled, i.e., CNN features
of each patch have changed due to the scaling of the whole testing image.

In this paper, we present a simple but effective framework, which we refer to
as cross-level LLC coding and cascaded fine-tuned CNN (cross-level LLC-CNN ),
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Fig. 1. Predictions of each patch in level 1 and level 2 of both the original image and
its scaled version (10/6 ratio) with the CNN trained on original training samples. It
is shown that predictions of the original testing image are all correct, while there are
many wrong predictions for all levels of the scaled image.

to provide CNN features more robust to scale transformation. The pipeline is
illustrated in Figure 2. Details will be presented in Section 3. Our proposed
framework first fine-tunes CNNs for each level in a cascaded way, which means
the CNN parameters learned in the coarser level are utilized as the initializa-
tion of the finer level. Subsequently, CNN features of all the patches in multiple
levels are extracted by their own fine-tuned CNNs. Then we learn a universal
(cross-level) codebook on all the CNN features of multi-level patches by k-means.
Based on this universal codebook, Locality-constrained Linear Coding (LLC) [23]
is performed for all the CNN features. The locality-constrained nature of LLC
ensures each patch to find its most similar patches among all the patches dis-
tributed in multiple levels, even if the image and its patches are scaled. This
helps build a more robust representation to scale transformation. Finally, all the
LLC features of patches in multiple levels are max-pooled together to build the
final image representation.

Extensive experiments on two challenging scene classification datasets, i.e.,
MIT indoor scenes [24] and SUN 397 [22], verify the superiority of the cross-level
LLC coding on the cascaded fine-tuned CNN features over other conventional
methods. The rest of the paper is organized as follows. First, we give a survey
of typical methods for scene classification in Section 2. Then we elaborate on
our framework, cross-level Locality-constrained Linear Coding (LLC) of CNN



4 Zequn Jie, Shuicheng Yan

features in Section 3. After showing experimental results in Section 4, we draw
a conclusion in Section 5.

2 Related Work

Scene classification as a fundamental and challenging vision task has attracted
much attention and great progress has been achieved in the past decades. Gener-
ally, methods which have been proposed to deal with this task can be categorized
into two types: Bag-of-Features (BoF) and deep learning.

Conventional methods mostly belong to the Bag-of-Features framework type.
Early methods of this type adopted K-means Vector Quantization (VQ) to en-
code local features [25]. Later, Sparse Coding (SC) [26] was proposed to relax
the cardinality constraint of VQ, which requires that only one coefficient of the
code words is 1 while the rest are all 0. To add spatial organization information
to the orderless Bag-of-Features, Spatial Pyramid Matching (SPM) [4] partitions
the entire image into multi-scale patches and performs VQ or SC on each patch.
Also, Orientational Pyramid Matching (OPM) [27] was used to partition the
image in a more discriminative way, with the consideration of the orientation in-
formation. In this type of framework, local scale invariant hand-crafted features
are usually relied on, such as SIFT [7] and HOG [8]. The combination between
low-level scale invariant features and mid-level orderless pooling builds a more
robust representation to scale transformation. The main limitation of this type
of framework lies in the designing of hand-crafted features, which needs lots of
tricks and is not applicable to some specific complex problems.

The other type of framework, i.e., deep learning, tries to model high-level
abstractions of visual data by using architectures containing multiple layers of
non-linear transformations. Convolutional Neural Network (CNN), as a typical
example of deep learning models, has achieved great success in image classi-
fication, including ILSVRC 2012, ILSVRC 2013, tiny image dataset CIFAR-
10/100 [28] and hand-written digits recognition [29]. [21] later proved that CNN
features do not have invariance to different kinds of geometric transformations,
e.g., scale transformation and rotation transformation. To strengthen the rep-
resentation power of CNN when scale transformation occurs, [19] proposed a
multi-scale orderless pooling framework, which includes CNN feature extraction
at multiple levels and VLAD [30] pooling over these features. Our approach dif-
fers from this work in the different CNN features extracted and the cross-level
feature coding and pooling schemes.

3 Cross-level LLC Coding on Multi-level CNN Features

3.1 Multi-level Cascaded Fine-tuned CNNs

To capture the context information of various sizes of patches, similar to [19], we
adopt a multi-level framework to extract fine-tuned CNN features in multiple
levels. The patch sizes of level 1 to level 5 are chosen carefully as follows: 256*256,
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224*224, 192*192, 160*160, 128*128. Intuitively, transferring the groundtruth
label of the whole image to its patches requires the patches not to be too small.
The reason is that in scene classification, the groundtruth label is the high-level
semantic abstract on the whole image, and too small local patches usually cannot
be summarized as the same abstract concept (groundtruth label) as that of the
whole image. Actually, we have found that the single patch recognition accuracy
of level 5 with patch size 128*128 only achieves 43.6%, while the recognition
accuracy of level 1 is 61.46% on the MIT indoor scenes dataset. Fortunately,
although in level 5, the single patch recognition accuracy is much lower than
that of the whole image, the recognition accuracy using max-pooled features
of this level can still obtain a satisfactory result of 64.97%. Thus, we set the
smallest patch size as 128*128. The stride of all the 5 levels is 32 pixels, thus we
have 1, 4, 9, 16, 25 patches from level 1 to level 5 respectively.

To improve the discrimination and adaptation power of off-the-shelf CNN fea-
tures on scene classification datasets, we fine-tune the CNN model pre-trained
on ImageNet for each level in a cascaded way. We choose the same CNN architec-
ture with [21] for its proven great performance in ILSVRC 2013. It contains five
convolutional layers and three fully-connected layers with 60 million parameters.
Since the numbers of categories in scene classification datasets differ from that in
ImageNet, we change the number of the outputs of the last fully-connected layer,
which represents the predicted probability of each target category, from 1000 in
ImageNet to 67 and 397 in MIT indoor scenes and SUN 397 datasets respec-
tively. Before fed into this CNN model, all the patches are resized to 256*256.
During the stochastic gradient descent training process, the parameters of the
first seven layers are initialized by the parameters pre-trained on ImageNet and
the parameters of the last fully-connected layer are randomly initialized with a
Gaussian distribution. The learning rates of the convolutional layers, the first
two fully-connected layers and the last fully-connected layer are initialized as
0.001, 0.002 and 0.01, respectively and reduced to one tenth of the current rates
after every 20 epochs (50 epochs in total). By setting the different learning rates
for different layers, the parameters in different layers are updated by different
rates. The main reasons for this setting are as follows: the first few convolution
layers mainly extract low-level invariant features, such as texture and shape, thus
the parameters are more consistent from the pre-trained dataset to the target
dataset, whose learning rates are set as a relatively low value (i.e., 0.001); for
the final few layers, especially the last fully-connected layer which is specifically
adapted to the new target dataset, a higher learning rate is required to guarantee
its fast convergence to the new optimum.

To strengthen the connections between the fine-tuned CNNs of different lev-
els and reduce the convergence time, we adopt a cascaded fine-tuning strategy.
Specifically, we use the model pre-trained on ImageNet as our initialization when
training the CNN of level 1. When training on other finer levels, we always use
the model trained on the last coarser level as our initialization. For example, the
CNN trained on level 1 will be the initialization when training CNN on level 2.
In Section 4, we will show the superiority of the cascaded fine-tuned CNN over
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off-the-shelf CNN and CNN fine-tuned with the pre-trained model on ImageNet
in recognition accuracy.

3.2 Cross-level LLC Coding and Pooling on CNN features

Although separate fine-tuning of CNN for each level enhances the discrimination
power of CNN features, it is still unstable for scale transformation, as fine-tuned
CNNs are trained on the original non-scaled training images and patches, thus
naturally characterize the image spatial organization of these non-scaled samples
better.

…… ……

…………

cross-level universal codebook

…… ……

cross-level 
max-pooling

K-means

LLC
LLC

LLCLLC

LLC

4096-D CNN features

16384-D LLC features

16384-D pooled feature

Level 1 Level 2 Level 5

Fig. 2. Pipeline of cross-level LLC coding and max-pooling on CNN features. First,
patch CNN features of all the 5 levels are clustered to learn a cross-level codebook.
Next, all these CNN features are encoded based on this codebook via LLC coding.
Finally, max-pooling is performed on all the encoded features to form a cross-level
pooled feature, as the new image representation.

To solve this problem, we propose to use a cross-level feature coding and
pooling scheme on the fine-tuned CNN features extracted from all patches of
multiple levels. The pipeline is illustrated in Figure 2. Firstly, a 4096-dimensional
feature is extracted in each patch with the fine-tuned CNN of their own level.
Subsequently, a cross-level codebook is learned by clustering all these multi-level
patch CNN features into 16384 clusters (4 times as the 4096 dimensions) with the
k-means algorithm. By doing this, different patch levels of CNN features can be
found among the code words of this cross-level codebook such that the codebook
gains multi-level representation power. Next, Locality-constrained Linear Coding
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(LLC) is performed on the multi-level CNN features based on the learned cross-
level codebook. LLC coding enforces the corresponding encoding coefficients to
be high if the code words are similar to the feature, and enforces the coefficients
of other dissimilar code words to be zero [23]. The underlying hypothesis is that
features approximately reside on a lower dimensional manifold in an ambient
feature space [31]. Specifically, LLC coding uses the following criteria:

min
C

N∑
i=1

||xi −Bci||2 + λ||di � ci||2

s.t. 1T ci = 1,∀i.

(1)

where N is the number of features to be encoded, xi represents the ith encoded
feature, B is the codebook matrix, ci is the ith LLC coding result, � denotes
the element-wise multiplication, and di ∈ RM is the dissimilarity between the
encoded feature and the code words with M denoting the codebook size. Specif-
ically,

di = exp

(
dist(xi, B)

σ

)
(2)

where dist(xi, B) = [dist(xi, b1), ..., dist(xi, bM )]T , and dist(xi, bj) is the Eu-
clidean distance between xi and bj . The analytical solution of LLC is as follows:

c̃i = (Ci + λdiag(d)) \ 1

ci = c̃i \ 1T c̃i
(3)

where Ci = (B − 1xTi )(B − 1xTi )T denotes the data covariance matrix. Hence,
LLC can be implemented very fast in practice.

By performing LLC on multi-level patch CNN features based on the cross-
level codebook, different levels of CNN features extracted from patches of various
sizes share a common codebook and can be encoded based on this codebook,
regardless of their levels. This naturally enhances the scale invariance of the
LLC features since no matter how the whole image and all of its patches are
scaled, the CNN features can always find their similar code words in the cross-
level codebook, either from the code words of their own levels or from other
levels, and use these code words to represent them, leaving the reconstruction
coefficients of all the rest dissimilar code words to be zero. As can be seen in
Figure 3, CNN features of the original image will probably be represented by
the code words of their own level, while CNN features of the scaled image may
be similar to the code words from other levels and represented by these code
words.

After obtaining LLC features of all the patches from multiple levels, we max-
pool these cross-level features together in a mid-level (patch-level) orderless man-
ner to form the final image representation. Finally, a linear SVM is trained based
on the cross-level pooled features to obtain the predictions. Experimental results
on MIT indoor scenes and SUN 397 datasets shown in Section 4 verify the great
discrimination and robustness to scale transformation of the proposed image
representation.
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Fig. 3. Illustration of selected representation codewords of CNN features for original
image and scaled image. Circles in different colors represent code words from different
levels. Blue and red solid squares denote level 1 and level 2 CNN features of the original
image, respectively, and blue and red hollow squares represent those of the scaled image
respectively. (better viewed in color)

4 Experiments

4.1 Datasets

We evaluate the proposed approach on the two currently largest scene classifi-
cation datasets: MIT indoor scenes and SUN 397.

MIT indoor scenes is the largest indoor scene dataset, which contains 67
categories and a total of 15620 images. The complex spatial layout of the indoor
scene image makes the classification even more difficult than outdoor scene image
classification. Therefore, this dataset is chosen as an important benchmark for
the evaluation of our approach. The standard training/testing split for the MIT
indoor scenes dataset consists of 80 training images and 20 testing images per
category.

SUN 397 is the current largest scene classification dataset. It contains 397 scene
categories, both indoor and outdoor, with at least 100 images per category. The
10 fixed splits for training and testing images are publicly available. For each
category, there are 50 images for training and 50 images for testing. The accuracy
is all averaged over all the 10 splits.

4.2 Multi-level Cascaded Fine-tuning

Baselines We compare our cascaded fine-tuned CNN with two baselines: (a) off-
the-shelf CNN features extracted by the pre-trained model on ImageNet (here
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we choose DeCAF6 [15] as our off-the-shelf CNN feature for its better perfor-
mance than DeCAF7); (b) fine-tuned CNN initialized by the pre-trained model
on ImageNet.

We conduct the comparison experiments on both the MIT indoor scenes
dataset and the SUN 397 dataset. To be fair, we test all these 3 CNN features
by simple max-pooling within their own level and training a linear SVM, without
cross-level LLC coding and pooling. Please note that for level 1, since the whole
image yields only one feature, there is no need to do pooling, and since no coarser
level exists, there are no cascaded fine-tuned results. All the fine-tuned CNN
features are obtained after 50 epochs of training. L2 normalization is performed
on all the CNN features before used to train the SVMs. The SVM parameter
(C) is all set as 0.5.

The results on MIT indoor scenes and SUN 397 are shown in Table 1 and
Table 2 respectively for comparison. As can be seen, both on the MIT indoor
scenes dataset and the SUN 397 dataset, fine-tuned CNN features, including
those fine-tuned on ImageNet and cascaded fine-tuned ones on coarser levels of
their own datasets, achieve higher accuracy than the off-the-shelf CNN features
on all the levels. This is very natural since fine-tuned CNN features gain stronger
discrimination power than generic off-the-shelf CNN features after the training
on the specific datasets. The comparison between fine-tuned CNN on ImageNet
and cascaded fine-tuned CNN shows that cascaded fine-tuned CNN features
obtain higher accuracy than CNN fine-tuned on ImageNet by approximately 1%
on all levels. This demonstrates that initialization by the trained model on the
coarser level of a specific dataset helps the finer level model to converge to a
better optimum than initialization by the model pre-trained on ImageNet.

Table 1. Classification accuracy on MIT indoor scenes for off-the-shelf CNN features,
fine-tuned CNN features on ImageNet and cascaded fine-tuned CNN features of each
level.

level 1 level 2 level 3 level 4 level 5

off-the-shelf CNN 53.65 57.26 60.75 61.48 61.89

fine-tuned CNN on ImageNet 61.46 62.58 63.17 64.03 64.23

cascade fine-tuned CNN — 63.77 64.27 64.39 64.97

Table 2. Classification accuracy on SUN 397 for off-the-shelf CNN features, fine-tuned
CNN features on ImageNet and cascaded fine-tuned CNN features of each level.

level 1 level 2 level 3 level 4 level 5

off-the-shelf CNN 40.53 41.25 41.68 42.07 42.64

fine-tuned CNN on ImageNet 43.75 44.88 45.17 45.54 45.81

cascade fine-tuned CNN — 45.61 46.33 46.58 46.87
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4.3 Cross-level LLC Coding and Pooling

Baselines We compare our cross-level LLC and pooling approach (cross-level
LLC-CNN ) with multi-level pooled CNN features [19]. We choose multi-level
max-pooling as the pooling method since we also perform max-pooling on our
cross-level LLC-CNN features.

Classification Accuracy We evaluate our cross-level LLC and pooling ap-
proach (cross-level LLC-CNN ) on the MIT indoor scenes dataset and the SUN
397 dataset. The baseline method, multi-level pooled CNN is also tested for com-
parison with our cross-level LLC-CNN. The comparison results on each level and
the combination of all levels are presented in Table 3 and Table 4. Here, cross-
level LLC coding and pooling on a single level means that max-pooling is only
performed within this level, while a cross-level codebook is still learned over all
the levels. For the combination from level 1 to level 5, the final output of multi-
level pooled CNN is obtained by concatenating the pooled result of each level
together. Before all coding and pooling procedures, all the CNN features are
extracted by the cascaded fine-tuned models. All the fine-tuned CNN features
are obtained after 50 epochs of training. L2 normalization is performed on all
the CNN features after extraction. The SVM parameter (C) is all set as 0.5. For
reference, we also include some typical state-of-the-art results to compare with
our approach.

In Table 3, from the comparison results between the baseline method and
our approach, we can observe that on some finer levels, i.e., level 3, 4 and 5, our
cross-level LLC-CNN works better than multi-level pooled CNN. The reason
may be that more patches are available on these 3 levels (9 patches in level 3, 16
patches in level 4 and 25 patches in level 5), and pooling over more LLC features
covers more information compared with original CNN features. Moreover, on the
combination of all the 5 levels, our cross-level LLC-CNN also achieves higher
accuracy than the baseline method, i.e., multi-level pooled CNN, which is 68.96%
vs 67.87%, with a lower-dimensional feature. Compared to other state-of-the-
arts, cross-level LLC-CNN also obtains the highest performance. It is worth
mentioning that, to our best knowledge, the former best performance on this
dataset is achieved by Multi-scale VLAD pooling on off-the-shelf CNN features,
proposed by [19]. Compared to this MOP-CNN framework, our cross-level LLC-
CNN obtains higher accuracy. Actually, the patches they used, i.e., 25 patches
in level 2 and 49 patches in level 3, are much more than ours. The larger number
of patches brings higher time cost in codebook learning and VLAD pooling. In
contrast, the smaller number of patches utilized in our approach and the fast LLC
performing make our cross-level LLC-CNN work much faster than their MOP-
CNN. Table 4 shows the experimental results on the SUN 397 dataset. Overall,
the comparison results are similar with those on MIT indoor scenes dataset. On
SUN 397, cross-level LLC-CNN outperforms multi-level pooled CNN on some
finer levels (level 4 and level 5) and the combination of all the 5 levels. Compared
to the state-of-the-arts, our approach achieves the best accuracy (50.87%) on the
combination of all the 5 levels with a relatively low feature dimension.
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Table 3. Classification results on MIT indoor scenes for (a) baseline: multi-level pooled
CNN; (b) cross-level LLC-CNN ; (c) other state-of-the-arts.

methods feature dimension accuracy

(a) multi-level pooled CNN
(baseline)

level1 4096 61.46
level2 4096 63.77
level3 4096 64.27
level4 4096 64.39
level5 4096 64.97

level1+level2+· · ·+level5 20480 67.87

(b) cross-level LLC-CNN
(Ours)

level1 16384 60.23
level2 16384 62.47
level3 16384 64.66
level4 16384 65.48
level5 16384 65.87

level1+level2+· · ·+level5 16384 68.96

(c) state-of-the-arts

SPM [4] 5000 34.40
FV+Bag of Parts [2] 221550 63.18
Mode Seeking [32] 60000 64.03
SPM+OPM [27] — 63.48
MOP-CNN [19] 12288 68.88

Table 4. Classification results on SUN 397 dataset for (a) baseline: multi-level pooled
CNN; (b) cross-level LLC-CNN ; (c) other state-of-the-arts.

methods feature dimension accuracy

(a) multi-level pooled CNN
(baseline)

level1 4096 43.75
level2 4096 45.61
level3 4096 46.33
level4 4096 46.58
level5 4096 46.87

level1+level2+· · ·+level5 20480 49.23

(b) cross-level LLC-CNN
(Ours)

level1 16384 40.48
level2 16384 42.53
level3 16384 45.89
level4 16384 47.41
level5 16384 48.53

level1+level2+· · ·+level5 16384 50.87

(c) state-of-the-arts

Xiao et al.[22] — 38.00
Decaf [15] 4096 40.94

Fisher Vector [33] 256000 47.20
SPM+OPM [27] — 45.91



12 Zequn Jie, Shuicheng Yan

Scale Invariance To evaluate the scale invariance of our approach, we ran-
domly select 670 testing images (half of the total) in MIT indoor scenes testing
set and scale them by different scaling ratios, i.e., 10/9, 10/8, 10/7, 10/6, 10/5.
For SUN 397, we use a random training/testing split (we choose the first split in
the experiment) to evaluate the scale invariance. In this split, 1000 testing images
randomly selected from the testing set are scaled by the same scaling ratios with
those for MIT indoor scenes. Specifically, when scaling by a factor of ρ, we crop
the image around the center with 1/ρ times of the original size, as illustrated in
Figure 4. We compare the recognition accuracy over these scaled testing images
of our cross-level LLC-CNN and the multi-level pooled CNN. Both methods are
trained on non-scaled original training samples and the combination from level 1
to level 5 is adopted. Before all coding and pooling procedures, all the CNN fea-
tures are extracted by the cascaded fine-tuned models. All the fine-tuned CNN
features are obtained after 50 epochs of training. L2 normalization is performed
on all the CNN features after extraction. The SVM parameter (C) is all set as
0.5.

original                  scaling ratio=10/9        scaling ratio=10/8         scaling ratio=10/7       scaling ratio=10/6       scaling ratio=10/5

Fig. 4. Illustration of the scaled testing image with different scaling ratios.

The curves of recognition accuracy vs scaling ratio on the MIT indoor scenes
dataset and the SUN 397 dataset are shown in Figure 5 and Figure 6, respec-
tively. Both figures reflect the trend that the recognition accuracy decreases with
the increase of the scaling ratio, whatever method is used. This shows that CNN
features do not have scale invariance, as mentioned by lots of works [19, 21]. How-
ever, with our cross-level LLC-CNN, the classification accuracy decreases much
more slowly than multi-level pooled CNN as the scaling ratio increases. As can
be seen, from the original image to the 10/5 ratio scaled image, the difference in
accuracy between our approach and the baseline approach is becoming increas-
ingly big as the scaling ratio increases. Specifically, recognition accuracy with our
approach when the testing image is scaled by 10/5 can still remain 50.63% and
34.32% for MIT indoor scenes and SUN 397 respectively. In comparison, the ac-
curacy when the scaling ratio reaches 10/5 drops to 35.42% and 24.47% for MIT
indoor scenes and SUN 397 respectively. The accuracy differences are all over
10%, showing the great superiority of our approach over the baseline approach.
This superiority proves that LLC coding of CNN features on the cross-level code-
book produces more robust features to the scale transformation, as LLC coding
ensures that scaled CNN features can still be well represented by the cross-level
codebook and their discrimination power is retained after scaling.
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Fig. 5. Classification accuracy comparison between multi-level pooled CNN features
and our cross-level LLC-CNN for scaled images with different scaling ratios on the
MIT indoor scenes dataset.

Fig. 6. Classification accuracy comparison between multi-level pooled CNN features
and our cross-level LLC-CNN for scaled images with different scaling ratios on the
SUN 397 dataset.
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5 Conclusion

In this paper, we proposed a cross-level Locality-constrained Linear Coding and
pooling framework (cross-level LLC-CNN ) on multi-level CNN features to en-
hance the discrimination and scale invariance of the image representation for
scene classification problems. Based on the cascaded fine-tuning scheme, the
CNN features gain stronger discrimination in scene classification. In addition,
with cross-level Locality-constrained Linear Coding and pooling on these multi-
level fine-tuned CNN features, robustness to scale transformation is improved.
We evaluated our approach on the MIT indoor scenes dataset and the SUN
397 dataset. Experimental results demonstrated that significant improvements
in classification accuracy are achieved for both original and scaled testing im-
ages. In the future, we will explore how to improve the discrimination power and
scale invariance of CNN in other vision tasks.
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